Monday, March 31, 2008

Glutathione

Glutathione

Glutathione peroxidase (GSH) is your body’s most abundant natural antioxidant. GSH protects your vision, boosts your immune system, helps turn carbohydrates into energy, and prevents the buildup of oxidized fats that may contribute to atherosclerosis.

Glutathione is a compound classified as a tripeptide made of three amino acids: cysteine, glutamic acid, and glycine. Glutathione is also found in every part of the body, especially the lungs, intestinal tract, and liver. The body produces and stores the largest amounts of GSH in the liver, where it is used to detoxify harmful compounds so that they can be removed from the body through the bile. The liver also supplies GSH directly to red and white blood cells in the bloodstream; it helps keep red blood and white blood cells healthy to maximize the disease-fighting power of the immune system. Glutathione also appears to have an anti-aging affect on the body. GSH levels decline with age, and a lack of glutathione has been shown to leave the body more vulnerable to damage by free radicals, thus speeding up oxidation (wearing down) of the body.

A glutathione deficiency can have a devastating effect on the nervous system, causing such symptoms as lack of balance and coordination, mental disorders, and tremors. Any illness (even a bad cold), chronic disorders such as asthma and rheumatoid arthritis, injury, or heavy exposure to pollutants can cause a GSH deficiency. This is because your body uses more GSH when it is supporting white blood cells and ridding the body of toxins.

Glutathione is found in almost all fruits and vegetables. Acorn squash, asparagus, avocado, cantaloupe, grapefruit, okra, orange, peach, potato, spinach, strawberries, tomato, watermelon, and zucchini are all good sources of GSH. Some vegetables, such as broccoli, cabbage, Brussels sprouts, cauliflower, kale, and parsley, not only provide GSH, but also actually stimulate the body produce more of this powerful antioxidant. Cooking destroys a lot of the glutathione in fresh fruits and vegetables, so you can get the most GSH from these foods by eating them raw or steamed. Eating foods high in glutamine, such as lean meats, eggs, wheat germ, and whole grains, can also stimulate the liver to produce more GSH.

More on B12 types

Most people do just fine with cyanocobalamin. But a percentage of people cannot convert efficiently cyanocobalamin into usable B12 (methylcobalamin), or for some other reason need to receive large quantities of the methylcobalamin form.

Methylcobalamin is the active form of vitamin B-12 that is better absorbed than many of the other forms like cyanocobalamin. Actually, Vitamin B12 comes in several kinds including hydroxy-, cyano-, and adenosyl-, but only the methyl form is used in the central nervous system.

Here are some of the many uses and benefits of Methylcobalin The methyl form of B-12 especially protects nerve tissue and brain cells, and promotes healthy sleep.

Methylcobalamin is important because it is delivered more efficiently to nerve tissues than regular B-12. Because of this, Methylcobalamin should be considered in the treatment of all neurological diseases.

Based on its mechanism of action, it can be effective in slowing the progression of hard to treat neurological diseases like ALS, Multiple Sclerosis and Parkinson's Disease. Published studies show that high doses can help regenerate neurons and the myelin sheath that protects axons and peripheral nerves. Theraputic doses of Methylcobalamin have also been known to prevent and reverse numbness from nerve damage.

Among the conditions which have responded favorably to Methylcobalamin are, ALS (Lou Gehrig's Disease,) Alzheimer's disease, Bell's Palsy, Parkinson's disease, Multiple Sclerosis, Brain Aging, Insomnia, Immune dysfunction, Chronic Fatigue Syndrome and Fibromyalgia, Schizophrenia, Diabetes, Impotence and Herpes Zoster (Shingles.)

In one study of Alzheimer's patients given Methylcobalamin, the subjects improved their memory, emotions, and ability to communicate. In Alzheimer's or suspected Mercury amalgam related diseases (e.g. MS,) a hidden Vitamin B-12 deficiency has been found, even though the usual blood tests are normal. In one study of patients with chronic, progressive Multiple Sclerosis, 60 mg of Methylcobalamin resulted in clinical improvement in visual and auditory function, but not motor disability.

Methylcobalamin may help prevent Parkinson's disease and slow the progression in those who are already afflicted. Parkinson's is caused by a destruction of brain cells that produce dopamine. Dopamine is produced from the amino acid, L-Dopa. Anyone taking any form of L-Dopa should also take from 5 to 20 mg of Methylcobalamin to enjoy the benefits of L-Dopa for much longer. For best results, it should be taken with Alpha Lipoic Acid. In a sleep study it was shown that Methylcobalamin reduced the amount of time the subjects slept, but the sleep quality was better and subjects awakened refreshed with better alertness and concentration.

Methylcobalamin at 6mg per day for 16 weeks also improved sperm count by 37.5 percent.

In other studies it was found that Methylcobalamin enhances and modulates lymphocytes (white blood cells) by increasing T-Cell (and especially T-helper cells) activity.

In mice, several different kinds of cancerous tumors were suppressed by administration of Methylcobalamin for seven days. These included liver, lung and other tumors.

In a study of Amyotrophic Lateral Sclerosis (ALS) patients, all given high dose (25 mg per day) Methylcobalamin showed increases in muscle strength. Methylcobalamin also slows the progression to AIDS in HIV + patients and helps prevent neurological problems. Methylcobalamin also balances the sympathetic/parasympathetic nervous system (calming when overexcited and stimulating when too calm).

A therapeutic dose for conditions requiring Methylcobalamin would be a minimum of 1500 mcg and a maximum of 6000 mcg per day. No significant therapeutic advantage appears to occur from dosages exceeding this maximum dose; however, it is likely that beneficial physiological effects occur at dosages as low as 100 mcg per day, especially if this dose is given repetitively over time. Methylcobalamin is usually administered in divided doses three times daily. For every day prevention take 1 mg daily under the tongue.
Dr. Edward F. Group III

B12 -- Cyanocobalamin Versus Methylcobalamin

: Cyanocobalamin is the most commonly supplemented form of vitamin B12, but you might be surprised to discover that this form of vitamin B12 does not actually occur in plants or animal tissues. In other words, outside of the chemically synthesized cyanocobalamin that you encounter as B12 in most vitamin supplements, you would be extremely hard pressed to find this compound in nature (in fact you would not be able to find it). As the name implies, cyanocobalamin contains a cyanide molecule. Most people are familiar with cyanide as a poisonous substance. Although the amount of cyanide in a normal B12 supplement is small and from a toxicology point, viewed as insignificant, your body will still need to remove and eliminate this compound. This removal is accomplished through your detoxification systems with substances like glutathione being very important for the elimination of the cyanide.

Compared with cyanocobalamin, it appears that methylcobalamin is better absorbed and retained in higher amounts within your tissues. In simple terms, they are used much more effectively. In general, methylcobalamin is used primarily in your liver, brain and nervous system.

Methylcobalamin is the specific form of B12 needed for nervous system health. Because of this it should be the first form of this vitamin thought of when interested in attempting to optimize the health of the nervous system with vitamin supplementation. Indications of a potential deficiency of B12 in the nervous system might include numbness, tingling, loss of feeling sensation, burning sensations, muscle cramps, nerve pain and slowness of reflexes.

Because of methylcobalamin's importance in nervous system health, it is also an important nutrient for vision. In fact, continued visual work (like work on a computer) often leads to a reduction in something called "visual accommodation". Methylcobalamin can significantly improve visual accommodation, while cyanocobalamin appears to be ineffective.

An elevated level of homocysteine is a metabolic indication of decreased levels of the coenzyme forms of vitamin B12, especially methylcobalamin. Homocysteine has received a tremendous amount of emphasis in the scientific literature because of its associations with heart disease and a variety of other specific health conditions. I have even seen advertisements on television promoting folic acid, as a vitamin needed to lower homocysteine. While this is true, and folic acid does lower homocysteine levels, the combination of methylcobalamin and folic acid appears to work much better.

The most well studied use of methylcobalamin has to do with sleep. Although the exact mechanism of action is not yet clear, it is possible that methylcobalamin is needed for the synthesis of melatonin. Available information indicates that methylcobalamin can modulate melatonin secretion, enhance light-sensitivity, and normalize circadian rhythm (your 24-hour clock). Because of this, individuals supplementing this form of B12 often have improved quality of sleep, often will require slightly less sleep, and will not uncommonly report that they feel a bit more refreshed when waking in the morning. Methylcobalamin is particularly effective when your 24-hour clock is not running smoothly. This may be indicated by a need for excessive sleep, changing sleep-wake cycles, or a tendency to have altered sleep wake patterns. As examples, you might require 10-12 hours of sleep, or you might not feel tired until 2-3 am and you might wake at noon, or you might find that you wake a bit later every day and go to be a bit later every night. Under all of these circumstances the combination of methylcobalamin (about 3000 mcg daily) and exposure to bright light in the morning can help reestablish your 24-hour clock.

Because of methylcobalamin's impact on 24-hour clock and the cycles that feed of this, it is also an important vitamin to regulate your 24-hour release of the stress hormone cortisol. This seems to be particularly important for blood types A and AB. Methylcobalamin also seems to result in a better 24-hour maintenance of body temperature. Typically individuals supplementing this coenzyme form of B12 have higher temperatures in the later hours of the daytime. This usually corresponds with improved alertness at the same time of the day. While this can be of importance to all blood types, low body temperatures seems to be an area of greater challenge for A's and B's.

The case against ergocalciferol (vitamin D2) as a vitamin supplement

Supplemental vitamin D is available in 2 distinct forms: ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3). Pharmacopoeias have officially regarded these 2 forms as equivalent and interchangeable, yet this presumption of equivalence is based on studies of rickets prevention in infants conducted 70 y ago. The emergence of 25-hydroxyvitamin D as a measure of vitamin D status provides an objective, quantitative measure of the biological response to vitamin D administration. As a result, vitamin D3 has proven to be the more potent form of vitamin D in all primate species, including humans. Despite an emerging body of evidence suggesting several plausible explanations for the greater bioefficacy of vitamin D3, the form of vitamin D used in major preparations of prescriptions in North America is vitamin D2. The case that vitamin D2 should no longer be considered equivalent to vitamin D3 is based on differences in their efficacy at raising serum 25-hydroxyvitamin D, diminished binding of vitamin D2 metabolites to vitamin D binding protein in plasma, and a nonphysiologic metabolism and shorter shelf life of vitamin D2. Vitamin D2, or ergocalciferol, should not be regarded as a nutrient suitable for supplementation or fortification.

Vitamin D2, if given in high enough doses, prevents infantile rickets and is capable of healing adult osteomalacia. However, the inefficiency of vitamin D2 compared with vitamin D3, on a per mole basis, at increasing 25(OH)D is now well documented, and no successful clinical trials to date have shown that vitamin D2 prevents fractures (19-21, 47). Given the assumption that the intake of any nutrient will deliver defined effects [ie, supplementation with vitamin D will lead to an increase in 25(OH)D or fracture prevention], it is clear that vitamin D2 does not fit this current nutritional notion. This is not to suggest that vitamin D2 is not efficacious, but, because the units of the 2 forms is clearly not equivalent, likely due to its distinct metabolic features and diminished binding of vitamin D2 metabolites to DBP in plasma, continual application of vitamin D2 in clinical use, including in research trials, only serves to confound our understanding of optimal vitamin D dosing recommendations. Furthermore, the public expects to derive the equivalent effect per unit dose of vitamin D, whether it is vitamin D2 or vitamin D3. The scientific community is aware that these molecules are not equivalent. Therefore, vitamin D2 should no longer be regarded as a nutrient appropriate for supplementation or fortification of foods.

Friday, March 14, 2008

What is the best Calcium supplement to take?

What's the best way to take mineral supplements? Picolinates? Amino acid chelates? Chelates involving other organic acids such as citrates? Whenever anyone asks my opinion on such matters, I find myself giving an answer they often don't expect: "Try orotates!"

Orotates are the mineral salts of orotic acid, a natural substance found in our bodies and also in various foods including dairy products. As theorized many years ago by the pioneering German physician Hans Nieper, orotates are a component of a natural system of electrolyte carriers for distributing minerals throughout the body. [1] (A different compartment of this same system uses amino acid complexes such as aspartates and arginates to deliver minerals.) Based on his observations of cells in culture, Nieper concluded that molecules of calcium orotate and magnesium orotate can pass through cell membranes intact without "dissociating" or breaking apart into their component ions, and thereafter release their respective ions only at specific membrane sites within the cell. [2] Subsequently he extended this principle to include other orotates such as lithium and zinc.

Working at his clinic in Hannover, Germany, Nieper applied his unique discoveries to the treatment of diseases such as cancer, heart disease, multiple sclerosis, and rheumatoid arthritis as well as other autoimmune conditions. Over the course of more than four decades Dr. Nieper treated thousands of patients with his innovative mineral transporters, many apparently with great success. However, in later years he published relatively little in medical journals, preferring instead to reserve his time for treating patients and for presenting occasional seminars about his work to medical professionals and consumers. As a result, his discoveries have been considered controversial by mainstream medicine or simply ignored, at least until recently.

Hans Nieper died in October, 1998 at the age of 70-ironically just at a time when many of his ideas had finally begun gaining wider acceptance. Only a few weeks before his death, in fact, the collected papers from a symposium on the medical uses of magnesium orotate were published in the journal Cardiovascular Drugs and Therapy. Overall, the symposium lent credence to Nieper's claims for the cardiovascular benefits of magnesium orotate while calling for additional human trials. [3]
How do the orotates work?

That's a complex question necessitating a somewhat detailed discussion of biochemistry and for this reason my explanation has been relegated to an article of its own. See How Orotates Work. For now I'll just state my summary conclusions: There is independent scientific evidence corroborating Nieper's theory of orotates as mineral transporters. In my judgment, the evidence tends to support Nieper's criteria for orotate as an electrolyte carrier, namely, (1) a low dissociation constant, (2) an affinity for specific cellular systems or organs, and (3) a metabolic pathway which liberates the transported mineral within the targeted organ or system. [1]

Perhaps the recent wave of interest in Dr. Nieper's compounds will inspire further research on the mechanism of transport. Until then there's plenty of evidence for the validity of Dr. Nieper's ideas in previous publications by Nieper and other researchers. The following sections summarize these results on the medical and biological effects of the various mineral orotates, together with a brief discussion of other potential uses. Beyond that, there is direct and compelling evidence from personal experience-see my article Orotates for Weight Loss, Cognitive Enhancement, and Athletic Performance for details. To give but one example, there can be little doubt about the effectiveness of Nieper's products when the majority of people trying calcium orotate as an appetite suppressant can tell almost immediately that it works, just as Nieper said it would.
Magnesium orotate

Of all the macronutrient minerals in the human body, magnesium is the one most likely to be deficient. Magnesium deficiency has been linked to a large number of disorders, including diabetes [4], hypertension [5], dementia [6], and osteoporosis. [7] Magnesium compounds are medically accepted as helpful for treating migraines, asthma, chronic lung disease, and cardiac conditions such as heart attack and arrhythmias. [8] Magnesium orotate should be even more effective than other magnesium supplements for such conditions, in view of its enhancement of magnesium transport and its documented benefits [3] [9] [10] in cardiovascular disorders.

In addition to its cholesterol-lowering and heart-energizing effects, magnesium orotate has also been reported to improve the elasticity of blood vessels. [11] Using capillarographic recordings Dr. Nieper was able to show that a daily dose of 380 mg magnesium orotate over 15 months was sufficient to normalize or greatly improve the elasticity of peripheral blood vessels in 60 of 64 patients. Such an effect on vessel elasticity suggests the use of magnesium orotate for lowering blood pressure as well as for inhibiting arteriosclerosis.

Dr. Nieper generally combined magnesium orotate with other nutrients for optimal effect. For example, it's known that potassium deficiency is closely linked with magnesium deficiency because magnesium ions are needed to activate an important cellular pump which regulates sodium and potassium levels. [4] [5] In addition, potassium orotate itself is thought to be beneficial for conditions such as cardiomyopathy and congestive heart failure (see section below on Potassium orotate). So it's not surprising to find that Nieper recommended a combination of magnesium orotate (1.5 to 2.5 grams per day) plus potassium orotate (138 to 300 mg daily) for treating angina and coronary heart disease. [12] He also suggested adding the pineapple enzyme bromelain (120 to 140 mg per day) to inhibit platelet aggregation and dissolve fibrin clots. The 2- and 4-year mortality rates for patients on this regimen were reportedly reduced by 90% or more compared to patients in other studies who received conventional medications. [12]

A similar Nieper combination designed for unclogging arteries involved magnesium orotate (1 to 1.5 grams per day) together with carnitine (4 grams per day), selenium (Se-enriched yeast, 300 to 400 mcg per day), bromelain (240 mg daily), and the enzyme serrapeptase 10 to 15 mg per day). See my article on CardioPeptase for additional information.

Finally, it's worth pointing out that magnesium orotate isn't just for heart patients-it's also for healthy athletes. In a double-blind, randomized study, [23] competitive triathletes were studied after 4 weeks of supplementation with placebo or magnesium orotate. [13] Blood was collected before and after a test consisting of a 380-meter swim, a 20-km bicycle race, and a 5-km run. Compared to placebo, magnesium orotate caused a greater increase during the test in serum glucose and venous partial pressure of oxygen, and a greater decrease in serum insulin, blood acidity, and serum cortisol. The changes in glucose use and reduction in stress responses occurred without affecting the athletes' competitive potential-quite the reverse, in fact. The exercising athletes had greater endurance as a result of the magnesium orotate supplements. By contrast, a different study in which athletes were supplemented with magnesium oxide (which is relatively poorly absorbed) reported no improvement in exercise performance, attesting to the superior uptake of magnesium in the orotate form compared to the oxide. [14]
Potassium orotate

Potassium deficiency is not considered to be common in view of the availability of adequate amounts of this mineral in most diets. Nevertheless, potassium deficiency is known to arise as a secondary consequence of magnesium deficiency. [5] Another cause of deficiency is the use of potassium-wasting diuretics to control high blood pressure. [15] Disease states known to be associated with low serum or tissue potassium include diabetes [4], insulin resistance [16], and high blood pressure [5] [17] as well as rheumatoid arthritis [18] and heart disease. [18]

Dr. Nieper's original motivation to develop orotic acid as an electrolyte carrier was inspired by results due to E. Bajusz showing that potassium orotate can prevent idiopathic myocardial necrosis in hamsters, while potassium chloride is ineffective. [19] [20] Nieper subsequently found that potassium orotate was highly effective for alleviating human cardiovascular diseases when combined with magnesium orotate (see discussion in the section below on Magnesium orotate). Even when administered by itself to heart attack patients, potassium orotate has been reported to result in faster recovery of myocardial contractibility than in placebo-treated controls. [21]

Other reported applications for potassium orotate include acceleration of wound healing [22] and enhancement of recovery and immune function following surgery. [23] Although not an antioxidant itself, potassium orotate facilitates the tissue uptake of vitamin C from serum and increases blood levels of reduced glutathione. [24] Finally, studies in animals have revealed antidepressant, psychostimulant, and anxiety-reducing effects associated with chronic potassium orotate administration. [25] [26]
Lithium orotate

Although no absolute need for lithium has yet been established in human nutrition, lithium intake can affect many different systems in the body in a positive way. Lithium is most famous for treatment of manic-depressive disorders. At high doses lithium can depress dopamine release [27] (which tends to flatten elevated moods), while at lower doses it can stimulate serotonin synthesis [28] (which gives an antidepressant effect). Although most people don't need treatment for manic-depressive illness, a very large number with mild depression could benefit from low-dose lithium supplements. Recently it's been discovered that lithium has potent neuroprotective effects as well (see the article Lithium increases gray matter in the brain). The hope now is that lithium supplements will prove capable of halting the progress of neurodegenerative diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, among others.

Lithium is also known for its immune-enhancing and antiviral effects, especially against herpes simplex virus. [29] It may be equally effective against measles, judging by results obtained in vitro. [30] The downside to lithium's immune-stimulating activity is that it can also set off autoimmune reactions in susceptible individuals. [31] For this reason, if you suffer from an existing autoimmune disease such as rheumatoid arthritis or lupus, don't take lithium supplements without first consulting your health care professional.

Another benefit of supplementing with lithium is its insulin-sensitizing effect. [32] Lithium has been found to decrease blood glucose levels, especially when used in conjunction with insulin or oral glucose-lowering drugs. [33] Results such as these have led to suggestions that lithium might be useful in treating diabetes. [32] [33]

As expected in view of the neurological activity of lithium compounds, Dr. Nieper found that lithium orotate in doses of 138 mg 4 to 6 times per week was effective in treating cases of depression, headaches and migraine, epilepsy, and even alcoholism. [34] The amount of lithium contained in the doses was only a small fraction of the amount conventionally given as therapy for manic-depressive illness, thus avoiding the risk of kidney toxicity typically associated with high-dose lithium. Elsewhere Dr. Nieper reported that 5 mg of lithium in the form of orotate was roughly as effective as 100 mg of lithium in the form of carbonate, giving a 20-fold enhancement of potency thanks to efficient transport of the lithium by its orotate carrier. [35]

Nieper's results were subsequently confirmed in a group of 42 alcoholic patients who were followed for between 6 months and 10 years. [36] Treatment with 138 mg of lithium orotate per day resulted not only in a marked decline in alcoholic relapses, but also in improvements in liver, cardiovascular, thyroid, and immune function. Migraines, cluster headaches, manic behavior, and seizure disorders were also reduced among this group. Eight patients reportedly developed muscle weakness, loss of appetite, and mild apathy as a result of treatment, but symptoms disappeared after the dose was reduced to 138 mg 4 to 5 times per week. The improvements in liver function appeared to be due to a synergy between lithium orotate and calcium orotate, both of which were administered to the alcoholic patients with liver disease. For more information on the treatment of liver disorders with a combination of lithium and calcium orotate, see the section below on Calcium orotate.
Note on lithium safety

As mentioned above, lithium in large doses can be toxic, especially to the kidneys. The therapeutic dose of lithium when administered as lithium carbonate is close to the toxic dose (i.e., there is a narrow therapeutic window), and for this reason blood levels and organ function need to be monitored continually. This is true only for lithium carbonate and not for lithium orotate. For example, according to the Physicians' Desk Reference, the recommended dose of lithium carbonate administered for treatment of psychiatric disorders is 300 mg three to four times per day. Since each 300 mg tablet of lithium carbonate provides 56.8 mg of elemental lithium, the total amount of lithium delivered would range from 170.4 mg to 225.6 mg per day. By contrast one lithium orotate tablet delivers 5.8 mg elemental lithium, which is roughly 1/30 to 1/40 the amount delivered by the recommended daily dose of lithium carbonate. Even taking several lithium orotate tablets per day would amount to a dose well below the toxic level for lithium.

Similarly, consumers of lithium carbonate are often warned of possible toxic effects if other medications such as ACE inhibitors or diuretics are taken concurrently. Although these warnings appear to be true for pharmaceutical lithium compounds only and not for modest doses of lithium orotate, it would nevertheless be wise to consult with a health care professional for anyone contemplating taking lithium orotate concurrently with either of these medications.
Zinc orotate

Zinc deficiency has been implicated in age-related osteoporosis [37] and, conversely, zinc supplements can speed the healing of fractures in animal models. [38] Zinc also plays a vital role in immune function, where deficiency is associated with atrophy of the thymus, reduction in white blood cell counts, and increased susceptibility to infection. [39] [40] Another important role for zinc is in maintaining male reproductive function. Deficiency of zinc is associated with hypogonadism and low levels of serum testosterone, reversible upon supplementation. [41] Zinc also appears to be important for the activity of growth hormone (GH) since GH loses effectiveness under conditions of zinc deficiency. [42]

As is well known, one of the major roles for zinc in human nutrition is its antioxidant activity. [43] Increasing zinc intake may protect against conditions associated with both oxidant stress and zinc deficiency, such as diabetes. [44] Zinc deficiency is known to be associated with an increased prevalence of coronary artery disease as well as diabetes, and with several associated risk factors including hypertension, hypertriglyceridemia, and insulin resistance (syndrome X). [45] [46]

In view of the association of zinc deficiency with diabetes, it's not surprising to learn that zinc orotate stabilizes blood glucose and reduces the need for insulin in diabetics, according to Dr. Nieper. [35] In addition, zinc orotate and other zinc compounds synergize with sulfur-containing antioxidants (sulfhydryls) to protect against free radical-induced tissue injury, [43] [47] a result which may have relevance to the treatment of diabetes as well as other diseases of increased oxidative stress. [44]
Calcium orotate

Treatment or prevention of osteoporosis is one of the main applications for calcium supplements generally and for calcium orotate in particular. Dr. Nieper specifically cited its effectiveness in treating both inflammatory and osteoporotic decalcification and in relieving pain resulting from osteoporosis of the spine. [19] In another paper Nieper reported successful recalcification of malignant bone tumors (thereby preventing further metastases) with calcium orotate in 10 out of 13 subjects. [1] He also found that a daily oral dose of about 600 mg was sufficient to reverse bone loss caused by radiological therapy in cancer patients, an effect documented by X-ray photos of several subjects before and after treatment with calcium orotate. [1] [19] A further paper reported on the benefits of calcium orotate in treating joint diseases such as arthritis and spondylitis. [48] On the basis of results such as these, it seems likely that calcium orotate can also have a beneficial impact on the degenerative bone changes characteristic of osteoarthritis. (For information on an orotate formulation optimized for bone health, see description below of Osteo Forte Orotate.)

But calcium orotate has many other uses as well. In his remarkable paper of 1969 Dr. Nieper reported his observations after dispensing more than 38,000 doses of calcium orotate to a large number of patients over the course of a year. [19] Nieper found that low-dose calcium orotate was effective in treating severe refractory psoriasis, lowering blood pressure in cases of arteritis and arteriosclerosis, relieving angina pectoris, and ameliorating cases of multiple sclerosis, disseminated encephalitis, retinitis, chronic hepatitis, and colitis. The dosages employed varied from about 300 to 1000 mg calcium orotate per day. No side effects were noted except for a loss of appetite among obese chronic overeaters, some of whom were able to lose a substantial amount of excess weight.

In subsequent research Nieper reported achieving complete remissions of chronic, aggressive hepatitis in 14 patients treated with 3 grams of calcium orotate per day for 2 years; 4 of these patients also required cortisone therapy, although at a decreased dosage. [49] Nieper found that an optimal therapeutic effect was achieved after a period of 9 to 18 months of daily supplementation, but not earlier. However, with a regimen of 2 grams calcium orotate plus 138 mg lithium orotate per day, the same beneficial results could be achieved in cases of hepatitis and cirrhosis in only 2 to 3 months. This research should be re-investigated in view of the emerging global health crisis of hepatitis C.

Around 1975 Dr. Nieper began treating lupus erythematosus patients with calcium orotate. [35] He found that a dose of 1 to 2.5 grams was surprisingly effective when administered over a period of at least one year, even in advanced cases with pulmonary constriction, pleural effusions, or cardiomyopathy. [35] [50] Therapy also involved low-dose prednisone and a variety of nutrients to promote adrenal steroid synthesis, such as selenium and vitamins C and D2, as well as other calcium and magnesium salts. An account of one patient's successful response to therapy with calcium orotate and other Nieper compounds can be found in an article available from the Brewer Science Library. [51] In addition Nieper found that multiple sclerosis sometimes accompanies lupus, so it's not surprising that his protocol for treating MS is strikingly similar to that for treating lupus. [52] [53] He recommended a dose of 1 gram calcium orotate per day for MS patients, with a higher dose given to those patients with a tendency toward migraine-like headaches.
References

1. Nieper HA. Recalcification of bone metastases by calcium diorotate. Agressologie. 1970;11(6):495-502. Available as article #CA21 from the A. Keith Brewer International Science Library at (608) 647-6513 or on the Web.
2. Nieper HA. The clinical applications of lithium orotate. A two years study. Agressologie. 1973;14(6):407-11. Available as article #CM12 from the A. Keith Brewer International Science Library at (608) 647-6513 or on the Web.
3. Rosenfeldt FL. Metabolic supplementation with orotic acid and magnesium orotate. Cardiovasc Drugs Ther. 1998;12(Suppl 2):147-52.
4. Durlach J, Collery P. Magnesium and potassium in diabetes and carbohydrate metabolism. Review of the present status and recent results. Magnesium. 1984;3(4-6):315-323.
5. Altura BM, Altura BT. Interactions of Mg and K on blood vessels-aspects in view of hypertension. Review of present status and new findings. Magnesium. 1984;3(4-6):175-94.
6. Glick JL. Dementias: the role of magnesium deficiency and an hypothesis concerning the pathogenesis of Alzheimer's disease. Med Hypotheses. 1990;31:211-225.
7. Rude RK, Kirchen ME, Gruber HE, Meyer MH, Luck JS, Crawford DL. Magnesium deficiency-induced osteoporosis in the rat: uncoupling of bone formation and bone resorption. Magnes Res. 1999;12(4):257-67.
8. Swain R, Kaplan-Machlis B. Magnesium for the next millennium. South Med J. 1999;92(11):1040-7.
9. Villanyi P, Votin J, Rahlfs V. Arteriosclerosis, myocardial infarct and blood lipids, their therapeutic modification by magnesium orotate [in German]. Wien Med Wochenschr. 1970;120(5):76-83.
10. Jellinek H, Takacs E. Morphological aspects of the effects of orotic acid and magnesium orotate on hypercholesterolaemia in rabbits. Arzneimittelforschung. 1995;45(8):836-42.
11. Nieper HA. Capillarographic criteria on the effect of magnesium orotate, EPL substances and clofibrate on the elasticity of blood vessels. Agressologie. 1974;15(1):73-7. Available as article #CM19 from the A. Keith Brewer International Science Library at (608) 647-6513 or on the Web.
12. Nieper HA. Lowering of incidence of infarction by means of magnesium orotate and potassium orotate in combination with bromelain [in German; unpublished ms., 1977]. Cited in: Heart disease treated with orotates and bromelain. Available as article #CM17 from the A. Keith Brewer International Science Library at (608) 647-6513 or on the Web.
13. Golf SW, Bender S, Gruttner J. On the significance of magnesium in extreme physical stress. Cardiovasc Drugs Ther. 1998;12(Suppl 2):197-202.
14. Weller E, Bachert P, Meinck HM, Friedmann B, Bartsch P, Mairbaurl H. Lack of effect of oral Mg-supplementation on Mg in serum, blood cells, and calf muscle. Med Sci Sports Exerc. 1998;30(11):1584-91.
15. Franse LV, Pahor M, Di Bari M, Somes GW, Cushman WC, Applegate WB. Hypokalemia associated with diuretic use and cardiovascular events in the Systolic Hypertension in the Elderly Program. Hypertension. 2000;35(5):1025-30. [Full text] [PDF (110 KB)]
16. Norbiato G, Bevilacqua M, Meroni R, et al. Effects of potassium supplementation on insulin binding and insulin action in human obesity: protein-modified fast and refeeding. Eur J Clin Invest. 1984;14(6):414-9.
17. Rubenowitz E, Landin K, Wilhelmsen L. Skeletal muscle magnesium and potassium by gender and hypertensive status. Scand J Clin Lab Invest. 1998;58(1):47-54.
18. Weber CE. Potassium in the etiology of rheumatoid arthritis and heart infarction. J Appl Nutr. 1974;26(1-2):41-67.
19. Nieper HA. The anti-inflammatory and immune-inhibiting effects of calcium orotate on bradytrophic tissues. Agressologie. 1969;10(4):349-57. Available as article #CM14 from the A. Keith Brewer International Science Library at (608) 647-6513 or on the Web.
20. Bajusz E. Interrelationships between reparative processes in myocardium and the development of congestive heart failure. Rev Can Biol. 1968;27(1):45-60.
21. Tomov L, Kaloianova A. Changes in hemodynamics in acute myocardial infarct following administration of potassium orotate [in Bulgarian]. Vutr Boles. 1976;15(4):79-82.
22. Kolokol'chikova EG, Pal'tsyn AA. Electron-radioautographic study of the effect of potassium orotate on RNA and protein synthesis in fibroblasts during experimental wound healing [in Russian]. Biull Eksp Biol Med. 1983;96(8):115-8.
23. Bilich GL, Nazarova LV, Sungurova EV. The enzymatic status of circulating lymphocytes as an index of the regenerative process in the lungs under stimulation with pyrimidine and purine derivatives. A clinical experimental study. Haematologia (Budap). 1982;15(1):71-81.
24. Kuzdenbaeva RS, Kurakina VE, Iztleuov MK. Effect of anabolic substances on the state of the individual components of the glutathione-ascorbic acid system [in Russian]. Farmakol Toksikol. 1980;43(5):607-9.
25. Karkishchenko NN, Khaitin MI. Comparative study of the indices of the antidepressive activity of potassium orotate and piracetam [in Russian]. Farmakol Toksikol. 1985;48(2):32-5.
26. Karkishchenko NN, Khaitin MI. Quantitative evaluation of the anxiolytic and nootropic effects of potassium orotate in a wide range of doses [in Russian]. Farmakol Toksikol. 1986;49(1):14-6.
27. Dziedzicka-Wasylewska M, Mackowiak M, Fijat K, Wedzony K. Adaptive changes in the rat dopaminergic transmission following repeated lithium administration. J Neural Transm Gen Sect. 1996;103(7):765-76.
28. Perez-Cruet J, Tagliamonte A, Tagliamonte P, Gessa GL. Stimulation of serotonin synthesis by lithium. J Pharmacol Exp Ther. 1971;178(2):325-30.
29. Rybakowski JK. Antiviral and immunomodulatory effect of lithium. Pharmacopsychiatry. 2000;33(5):159-64.
30. Cernescu C, Popescu L, Constantinescu S, Cernescu S. Antiviral effect of lithium chloride. Virologie. 1988;39(2):93-101.
31. Lieb J. Lithium and immune function. Med Hypotheses. 1987;23(1):73-93.
32. Tabata I, Schluter J, Gulve EA, Holloszy JO. Lithium increases susceptibility of muscle glucose transport to stimulation by various agents. Diabetes. 1994;43(7):903-7.
33. Hu M, Wu H, Chao C. Assisting effects of lithium on hypoglycemic treatment in patients with diabetes. Biol Trace Elem Res. 1997;60(1-2):131-7.
34. Nieper HA. The clinical applications of lithium orotate. A two years study. Agressologie. 1973;14(6):407-11. Available as article #CM12 from the A. Keith Brewer International Science Library at (608) 647-6513 or on the Web.
35. Nieper HA. Revolution in Technology, Medicine and Society. Oldenburg, Germany: MIT Verlag; 1985. Available from the A. Keith Brewer International Science Library at (608) 647-6513 or on the Web.
36. Sartori HE. Lithium orotate in the treatment of alcoholism and related conditions. Alcohol. 1986;3(2):97-100.
37. Atik OS. Zinc and senile osteoporosis. J Am Geriatr Soc. 1983;31(12):790-1.
38. Igarashi A, Yamaguchi M. Increase in bone protein components with healing rat fractures: enhancement by zinc treatment. Int J Mol Med. 1999;4(6):615-20.
39. Mocchegiani E, Giacconi R, Muzzioli M, Cipriano C. Zinc, infections and immunosenescence. Mech Ageing Dev. 2000;121(1-3):21-35.
40. Fraker PJ, Jardieu P, Cook J. Zinc deficiency and immune function. Arch Dermatol. 1987;123(12):1699-701.
41. Prasad AS, Mantzoros CS, Beck FW, Hess JW, Brewer GJ. Zinc status and serum testosterone levels of healthy adults. Nutrition. 1996;12(5):344-8.
42. Kurtogu S, Patiroglu TE, Karakas SE. Effect of growth hormone on epiphyseal growth plates in zinc deficiency. Tokai J Exp Clin Med. 1987;12(5-6):325-9.
43. Powell SR. The antioxidant properties of zinc. J Nutr. 2000;130(5S Suppl):1447S-54S. [Full text] [PDF (249 KB)]
44. DiSilvestro RA. Zinc in relation to diabetes and oxidative disease. J Nutr. 2000;130(5S Suppl):1509S-11S. [Full text] [PDF (153 KB)]
45. Singh RB, Niaz MA, Rastogi SS, Bajaj S, Gaoli Z, Shoumin Z. Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr. 1998;17(6):564-70.
46. Falkiewicz B, Dabrowska E, Lukasiak J, Cajzer D, Jablonska-Kaszewska I. Zinc deficiency and normal contents of magnesium and calcium in metabolic X syndrome patients as assessed by the analysis of hair element concentrations. Biofactors. 2000;11(1-2):139-41.
47. Floersheim GL. Synergism of organic zinc salts and sulfhydryl compounds (thiols) in the protection of mice against acute ethanol toxicity, and protective effects of various metal salts. Agents Actions. 1987;21(1-2):217-22.
48. Nieper HA. The clinical effect of calcium-diorotate on cartilage tissue, the specific function dependent upon the pentose metabolism of bradytrophic tissue [in German]. Z präkt Geriatrie. 1973;3(4):82-9. English translation available as article #CM29 from the A. Keith Brewer International Science Library at (608) 647-6513 or on the Web.
49. Nieper HA. Liver orotate: the curative effect of a combination of calcium-orotate and lithium-orotate on primary and secondary chronic (aggressive) hepatitis and primary and secondary liver cirrhosis (lecture, 1974). Available as article #CM11 from the A. Keith Brewer International Science Library at (608) 647-6513 or on the Web.
50. Nieper HA. Excerpts of comments by Dr. Nieper from various sources, p. 12 (workshop transcript, 1987). In: Doctor's packet regarding MS and other illnesses. Available from the A. Keith Brewer International Science Library at (608) 647-6513 or on the Web.
51. Pakkala A, Pakkala L. The muzzled wolf. Total Health. 1982 Sept:47-9. Available from the A. Keith Brewer International Science Library at (608) 647-6513.
52. Nieper HA. Regimen for the treatment of multiple sclerosis (unpublished ms., updated 1994). Available as article #MS10 from the A. Keith Brewer International Science Library at (608) 647-6513 or on the Web.
53. Nieper HA. The treatment of multiple sclerosis (unpublished ms., 1985). Available as article #MS12 from the A. Keith Brewer International Science Library at (608) 647-6513 or on the Web.
54. Strause LG, Hegenauer J, Saltman P, Cone R, Resnick D. Effects of long-term dietary manganese and copper deficiency on rat skeleton. J Nutr. 1986;116(1):135-41.
55. McCoy H, Kenney MA, Montgomery C, Irwin A, Williams L, Orrell R. Relation of boron to the composition and mechanical properties of bone. Environ Health Perspect. 1994;102(Suppl 7):49-53.